(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
prefix(Cons(x', xs'), Cons(x, xs)) → and(!EQ(x', x), prefix(xs', xs))
domatch(Cons(x, xs), Nil, n) → Nil
domatch(Nil, Nil, n) → Cons(n, Nil)
prefix(Cons(x, xs), Nil) → False
prefix(Nil, cs) → True
domatch(patcs, Cons(x, xs), n) → domatch[Ite](prefix(patcs, Cons(x, xs)), patcs, Cons(x, xs), n)
eqNatList(Cons(x, xs), Cons(y, ys)) → eqNatList[Ite](!EQ(x, y), y, ys, x, xs)
eqNatList(Cons(x, xs), Nil) → False
eqNatList(Nil, Cons(y, ys)) → False
eqNatList(Nil, Nil) → True
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
strmatch(patstr, str) → domatch(patstr, str, Nil)
The (relative) TRS S consists of the following rules:
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0, S(y)) → False
!EQ(S(x), 0) → False
!EQ(0, 0) → True
domatch[Ite](False, patcs, Cons(x, xs), n) → domatch(patcs, xs, Cons(n, Cons(Nil, Nil)))
domatch[Ite](True, patcs, Cons(x, xs), n) → Cons(n, domatch(patcs, xs, Cons(n, Cons(Nil, Nil))))
eqNatList[Ite](False, y, ys, x, xs) → False
eqNatList[Ite](True, y, ys, x, xs) → eqNatList(xs, ys)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
prefix(Cons(x', xs'), Cons(x, xs)) →+ and(!EQ(x', x), prefix(xs', xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs' / Cons(x', xs'), xs / Cons(x, xs)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)